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Factorizable upwind schemes:

the triangular unstructured grid formulation

David Sidilkover*

IC4SE, :VASA Langley Research Cenh,, Hampton, 17,1 2.7681

Eric J. Nielsen*

:VAS.4 Langley Research Center, Harnplm_, |:4 23681

Tile upwind factorizable schemes for the equations of fluid was introduced recently.
They facilitate achieving the Textbook Multigrid Efficiency (TME) and are expected also
to result in the solvers of unparalleled robustness. The approach itself is very general.
Therefore, it may well become a general framework for the large-scale Computational
Fhfid Dynamics. In this paper we outline the triangular grid formulation of the factor-
izable schemes. The derivation is based on the fact that the factorizat)le schemes can
be expressed entirely using vector notation, without explicitly mentioning a particular
coordinate frame. We describe the resulting discrete scheme in detail and present some
computational results verifying the basic properties of the scheme/solver.

Introduction

This work is a part, of effort, going on at NASA

Langley for several )'ears towards constructing a new

generation of the flow solvers (see, for instance Thomas
et alli, Roberts et al-'). The key idea, that was sug-

gested by Brandt, 3 is to use a special relaxation that

recognizes the mixed character of a system of PDEs.
Then each sub-factor of the system can be treated in

different (optimal for it.) way. It is well-known that
the Euler equations "consist." of two different factors:

advection and full-potential operators. The advection

part can be treated very efficiently, say, by the march-

ing relaxation. The fidl-potential operator is of the
elliptic type in the subsonic regime. Therefore, it. can

be treated very efficiently by nmltigrid. In the su-

personic regime it. becomes hyperbolic: wave equation

with respect, to the flow direction. For Mach number

substantially larger than one, the entire syst.em can

be solved efl]cient.ly by marching. Nearly sonic speed

regime can be dealt, with by nmltigrid, but requires

some special care.

Solvers based on such a special (Distributive) relax-

ation were constructed initially for incompressible flow

and were based on the staggered grid diseretizations.

The optimal multigrid efficiency was demonstrated

Brandt and Yavneh. 4 Staggered-grid discretizations

exist also for the compressible flow equations. How-

ever, they all are limited to the subsonic regime, since

they have no shock-capturing capabilities. The stan-
dard shock-capturing schemes, on the other hand, are
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not factorizable, i.e. they do not reflect the mixed

character of the PDEs (see Sidilkovera). Therefore, it
is not possible to construct a relaxation of Dislributive

type that can be used with these schemes.
Clearly, there is a need for discretizations that are

both factorizable and have shock-capturing capabili-

ties. A factorizable upwind scheme was constructed in

Sidilkover _ for the case of Cartesian grids. A detailed

description of its extension to the case of structured

body-fitted grids is given in Sidilkover et al. r A set. of

numerical results was presented in Roberts el al. s

The purpose of this paper is to present a const.ruc-

tion of a. factorizable scheme on triangular unstruc-

tured grids.

Euler equations mad their properties

The non-conservative quasilinear formulat.ion of the

compressible Euler equations in three dimensions can

be written using vector notation as follows

ft. V's = 0 (la)

p/7. V/7 + V'p = 0 (lb)

pc'-'U. /7+ ft. Vp= 0, (lc)

where s denotes the entropy and

dp ('2)
ds = dp c2 ,

/7 is the velocity vector, the pressure t) is given by

I/i'l2
P = (*t - 1)(: - p--_)

the speed of sound

(3)

c = _/_. (4)
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In this section we recall some of the basic properties

of the equations (1). It is suftlcient for the purpose
of the analysis to assume constaucy of the coefficients.

It is known t.hat this syst.em of equations is of the

mixed type: it. consists of the advection and the Full-

Potential factors. This can he made obvious by intro-

ducing the new set. of variables.
Recall that a vector field can be decomposed into

soleuoidal and irrotational parts

,7 = V × _Z+ V'+, (.5)

where _5 is the potential and f is the streamfnnction.

The pressure gradient is related to the gradient of the

potential as follows

@ = va¢, (6)

Stll>stitutillg the new variables _ and _7 into the pres-

sure equation we obtain the Full-Potential equation

- (,7. = 0 (7)

Note, that all the terms involving the slreamflmction
cancel out.

Performing the variable substitution in the momen-

tum equations gives

v(v × f) = 0 (s)

Note, that all the terms involving the potential vari-
able cancel out.

Introducing a new variable vorticity

fi = (9)

and applying operator V× to (8), we obtain

eft. Vfi = 0 (10)

This verifies indeed that the Euler system is of the

mixed type. The advection factor is represented by

the equations for entropy (la) and vortieity (10). The

full-potential factor is given by (7). It also lnakes it,

dear that (for the linear constant coemcients case) the

momentum equations (lb) drive the solenoidal part of

the solution, while the irrotational part of the solution

is subject solely to the pressure equation (lc).

In a general nonlinear case (away from singularities,

like shocks and contact discont.inuities) there is a weak

coupling between different factors due to the so-called

subprincipal terms. This coupling can be neglected

for the purpose of/.he construction of a fast. solver (see

Brandt3). Therefore, the latter can rely entirely on

the analysis of the linear case.

Preparations for the scheme

construction

l,Vhen constructing a discrete approximation to the

Euler equations, the central scheme can serve a. ba-

sic building block. Ilowever, it is crucial to inchlde

a certain artificial dissipation in the discretization for

stability reasons. One of the additional problelns than
becomes how to compensate for the loss of accuracy

due to the artificial dissipation. Various ways to deal

with this issue received an exlensive coverage in the

literature. Constructing a factorizable scheme implies

resolving this issue in a very specific way.

FDA analysis

The First, Differential Approximation (FDA) (or the

modified equations) corresponding to a cer! ain discrete

scheme is the PDEs augmented by the leading error
terms.

We shall start our analysis with formulating the

FDA for the factorizable genuinely multidimensional

scheme. The observation made in regarding the gen-

uinely multidimensional upwind scheme introduced in

Sidilkover" was that a part. of the artificial dissipa-

tion present in the discrete monlentum equations (in

subsonic case) is proportional to the gradient of the

residual of the pressure equation. The artificial dissi-

pation of the pressure equal.ion is proportional to the

divergence of the residuals of the molnentum equa-

tions. A vector formulation of the entire scheme (on

/lie Cartesian grids) is given in Sidilkover. 1°

The fact thai the entire scheme can be expressed

using the vector notation appeared to be very instru-

mental for the purpose of extending the factorizable

to the structured body-fitted grids (See Sidilkover et

al r and Roberts et alS). I1 is of very importan! for the

purpose of this paper too.
The FDA of a factorizable scheme for the Euler

equations is given by the following

q.s = 0 (lla)

pqff + Erp- °'"_--_ll_'(pc2_'. ,7+ ft. X"p) - K'D
2 c

= 0 (llb)

O'p 1

pe_-V, fi'+ ,7. Vp - --_-cV • (p_7. V/7 + V'p)

= 0 (llc)

The term VD in the nmmentum equations plays an

important role when the operator q is discretized us-

ing an advection scheme of a certain type to maintain

the second order accuracy and factorizability of the

whole Euler scheme. This special type of the advection

schelne allows to upgrade the accuracy of the advec-

tion factor to the second order without affeetiug the

discrete full-potential part. For now we onlit the term

_D and consider q to correspond to the standard first
order accurate advection scheme.

A factorizable scheme corresponding to the FDA as

.given by (11) is stable for subsonic case only. The
scheme can be extended so it. will be valid for tran-

sonic/supersonic regime by a simple modifi('ation: in-
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troduction of a cut-off parameter on tile terms involv-

ing pressure in the artificial dissipation

qs = O(12a)

O'ml
17"(pc27" "if+ I_ft. _,p) _ 7"D

Pq/7+7"P- 2 c

= 0(12t) )

O'p 1

pc2V . /7 + i7.7"p - ---_--cV • (piT. 7"ff + t_Y'p)

= 0, (12c)

where

a" = max(l, M'-) (13)

We shall demonstrate the factorizability property of

FDA corresponding to the new scheme. Introduce the
auxiliary variables - potential ¢ and streanffunction _7.

and substitute the following expressions for the vari-

ables /7, p

2 c

cr,,,I 1/7.7")0 (14a)
+V(/ 2 c

dp = -p(/7.7" - _eX-'_-)da (14b)

into (11). Introducing the vorticity variable

ofl 16 = 7" × (I - -2- _ 7")7" × ( (1,5)

and applying the 7" x operator to the momentum equa-
tions we obtain

In order to obtain the factorizable discrete scheme,

we need t.o introduce some finite differences that pos-

sess the properly analogous to (17). Such finite differ-

ences were introduced for the case of slructured grids
infi

We have t.o find such differences for the case of

triangular grids (see Figl), where (x,y) is a local

(non-orthogona]) frame. We shall illustrate this on

a simple example. Consider approximating the par-

tial derivative 0,_-x. Assuming that we have at our

disposal the "'compact" stencil that involves 7 points:
0,1,2,3,4,5,6, there is only one way of doing it,

namely by cOhrdefined as follows

o!5,, = (,,_- 2,° + ,,,)rid (18)

Differences defined in such a way do not have Ihe

property (17). We can conclude that using the con>
pact stencil 7-point stencil only there is no way to

achieve this property. We know from 6 that the 9-point

box slructured grid stencil is suffcien! for this pur-

pose. There are several ways to augment the compact

7-point stencil to the 9-poin! one in the current trian-

gular grid context. It. is clear that the 7-point stencil,

therefore, needs to be augmented. We can do it by

adding t.o it 6 more nodes: 7,8,9, 10, Ii, 12. The par-
t.ial derivative as..,- can then be approximated 1)y a u,i&

difference

/)h x = [(U4 -- 2U,0 + Ul)/2

+(ul0 + u3 -u.., - u,)/8
+(,,_, + ,,0- ,,_- ._)/8]//,-"

(19)

pff. 7"0 = 0. (16)

Note, that, as well as in the PDE case, all the terms

involving the potential variable canceled out. Substi-

luting the auxiliary variables into the pressure equa-

tion, it. is easy to verify that all the terms involving
the streamfunction cancel.

We can summarize that due to the specifc form of

the artificial dissipation, the FDA (11) of the discrete
scheme is factorizable - it reflects the mixed character

of the original system of PDEs.

Special discrete operators

We consider the two-dimensional case from now on.

When discretizing the derivatives, a special care needs

t.o be taken of what kind of discrete operators are used

in order to preserve the factorizability property at the
discrete level.

Note, that when demonstrating the factorizability

property of the scheme's FDA (11) we used the facts

of the following type

Oy,qO x = O.ryOy (17)

&.v&_ = Gx0y_

The derivatives 0uu , 0r. 0u can be approximated in the

analogous way. It is easy to verify that such differences

possess the property (17).

Structure of some artificial dissipation terms

The central part of the scheme is the constructed
in the standard way. The artificial dissipation terms

corresponding to the advection scheme are evaluated
in the standard fashion as well. A special care needs

to be taken of the other artificial dissipation terms.

Recall, that the artificial dissipation terms in the

momentmn equations (lib) that are sul)ject to the

gradient operator are the residual of the pressure equa-
tion. Denote them

R r = pc27"./7 + ft. 7"p (20)

and the expression subject, to the action of the diver-

gence operator in the pressure equation (llc) is the
residual of the momentum equations

/_,_ = pff. 7'/7+ g'p (21)
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Fig. 1

Constructing the discrete scheme

Our goal now is to derive a discretization of a con-

servation law (scalar and a system). For this purpose

we need to evaluate the numerical fluxes through each

of the faces of the duaI-median cell (see Fig.l),

Global and local coordinate frames

Computational grid segment and a control volume.

( a{ a,_ ) (22)H = /3e /3,_ '

where (a(,;3_) and (a,_,3,_) are the unit vectors in
the direction of the _ and _/ coordinate axes respec-

tively. The relationship between the Cartesian and

contravariant velocity eomponent,s is described as fol-
lows

:,
or

(2_t),,-,(:)--
The Jacobian of this coordinate rotation

9

3 4

n

6

Fig. 2 Nodes used for evaluating the flux through
a face of dual-median cell.

J - det H = a_,'3,I -/3_o. (25)
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Tile inverse of tile tIessian H

I (/3,,-a,_ ) (26)H-I = j -& a_

It is convenient to use the scaled contravariant velocity

components

U -_- Ju = u.3,_ - va,l (27)
f" -- Ji_ = -u3_ + vo_

Th relationship between the Cartesian and covariant

velocity components is given by the following

(28)
7' 9 /

or

l_ = ua( + 7,& (29)
V = ua,I + vi],t

The eovariant and covariant velocities are related as

follows

(30)
,, 9 ,,

HT H = ( a_ + /3_ a_a_ + 3_,3,, ) (31)

The total velocily squared

I_l "- = ,,'- + ,,-_ = ,ag + _ (32)

Scalar adveetion

Consider a scalar advection equation

s, + ,,s.+ ,,s; = 0. (a3)

The discrete equation to solve for s at. point 0 is ob-

tained by balancing fluxes through the surface of the

dual median cell (see Fig.l)

Na

_--_[f hal; = 0, (34)
i=1

where h_ is the length of the corresponding face and
the numerical flux

1 ,. 1 -,
f = --t'el_-_l°g_u + 7g' (*° + <_) (35)

where 0_ stands for a divided difference

tkO_ s = s2 - so (36)

The discrete equation to solve for s at. point 0 is ob-

tained by substiluting numerical fluxes evaluated by

analogy to (35) on all the faces of the dual-median cell

and sut)stitut.ing then] into the flux-balance equation

(34).

Euler system

hltegrating the Euler equations in the conservative
form over the coutrol-volmne (dual-median cell) and

applying the Green's theorem, we obtain

_ F.ffdl=O, (37)
L'

where OC is the control volume's boundary ff is a unit

vector normal to the boundary and

F = PU2 + P i + puv ) (38)
pay fly 2 + l)

(E + P)" (V. + p),,

A conservative discretization of the Euler system can

be written in the following form

N,,

_-_[fi h,,], = 0. (39)
i=1

The numerical flux through a face can be represented
as a sum of central and the artificial dissipation parts

F = pc + ,_d (40)

The central portion of the flux is given by

= _][F(uz) + F(un)].f_
Z

(41)

where now fi"= (371, -o,_) is a unit vector normal to
the face. The rest of this section is dedicated to the

question of deriving the diffusive portion of the nRmer-
ical fluxes.

We would like to emphasize that it is fairly simple

to implement the new discretization within the exist-

ing control-volume computer codes. It requires only
the new numerical flux routine. Such a routine can be

written in several simple st,eps, starting from l.]le stan-

dard upwind scheme and performing the modifications

gradually.

The standard upwind scheme

The first step is t,o rewrite the standard upwind for

the subsonic case witlmut explicit mention of the char-

acteristic variables, etc. The scheme is given by the

following numerical flux

pcOhP + U/cO_v
et,lt>t0_,# -

(42)

The derivation presumes that these fluxes correspond

to the local orthogonal coordinate fi'ame associated

with the cell-face. Therefore, the momentum equa-

tions diffusive fluxes can be rotated t.o the global co-

ordinate frame (x, y) by in the following way

I2

5OF7

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 2001 2575



The obtain diffusive fluxes correspond to the quasi-
linear nonconservative formulation of the guler equa-

tions. Tile need to be transformed, therefore, to the

form appropriate for the conservative discretization

where

,_" = :_IB (44)

1 0 0 1/c 2 )

M = u 1 0 u/c 2
i, 0 1 r/c 2

(E-//)/2 u v I/('7- i)+ (/7. ff)/(2c 2)

(4.5)

A modificd scheme

As an intermediate step towards constructing the

factorizable scheme we can consider the following case:

() ( ),,B _., =-_ _ plUi02v
I h peO"P + U/cO)p= _ - - - (46)

f4 pcC'Og 0 + cO_p

The main difference from the standard scheme is that

the mon-mntum equations diffnsive flnxes (the second

and third components) are now attributed to the mo-

mentum equations in the covariant, directions (_ and

q). Therefore, the transformation back to the global

orthogonal fi'ame takes the following form

I',
f'-' ) :=(HT)-' ( fa ) (47)

This change is necessary towards eventually obtaining

the approximation for the gradienl operator term in

(lib)

Another intermtdiate sh p

= - _ he (4stB-- /_ ptgtogv

The coefficient in front of the pressure difference in
the fourth component constitutes the change from the

previous case. It is necessary in order arrive later to

the approximation of the divergence term

The faclorizabte scheme

Now we shall incorporate the correction (mixed

derivative) terms into the scheme, so that some of
the terms in the artificial dissipation can be viewed as

residuals of the momentum and the pressure equations

and, therefore, are second order small. The latter inod-

ification together with introducing the wide differences

that possess the conmmtativity properties results in a
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factorizable scheme, lmplenlentation of all these steps

can be done in several steps as well, testing the routine
after each modification.

We start, from re-interpreting of some standard no-
tions. A standard "narrow" divided difference can be

defined also as

,b'°l_0_1-"+ S'°230_23
O(h = S °12 + b'°us

Define a "wide divided difference"

(49)

(2,_70120gl-2+ 2sO230g 2a
+SOSlO °61 + slseo ls'-

(2S012 + 2,5,023 + SO61 + ,_'182 + $293 + S034)

(50)

Similarly, we can define O_h and 0nh. Adding the some
specific q-derivative t.erms (all the differences used here

are narrow) t.o the artificial dissipat.ion of the pressure

equation obtain the residual of the momelfluin equa-
tion in the direction normal to the cell face

tqhT -----p(17.TO_¢'+ _7'0h)17" + ![0_ + (o_-a,, + '_Srt)D,m]p
J

(51)

We also add some q-derivative terms to the artificial

dissipation of the lnonlentum equMion in _ direction

to obtain the residual of the pressure equation. All

the differences used here are wide. The notation (llq

for the residual) reflects this fact

._ = pc2(_ _ + 82v) + (c-a_'+ fa_)v (52)

The artificial dissipation then takes the following form

O" I 1 nT_h ' hef,lSl0gO]
y,_- ).; =-_ t,er,lr:,lOg9

f4 %lcR h,

(53)

The need for rescaling the artificial dissipation in order

to avoid the qu&si-ellipticity of the full-potential fac-

tors approximation for the low-speed flow regions was

established in. 6 The scaling paralneters cr..... % serve

this purpose. In the conducted preliminary numerical

test (see next section) they were taken to be 1. The

parameter l was taken to be equal to h{.
There remains a need to introduce some modifica-

tions into the central part, of the scheme. It is neces-

sary for factorizability that the pressure gradient term
in the nmmentum equations is approximated by dif-

flrcnces. Using wide differences to approximate the

pressure advection operator in the pressure equation
is not necessary for factorizability but is still benefi-
cial since it results in a better form of the discrete

d
It
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Fig. 3 The computational grid.

Fig. 4 Solution: density contours.

full-potential factor. These modifications call be in-

troduced in a very simple way using a trick 1)y Tom

tloberts: adding certain terms to the artificial dissipa-

tion. hdroduce the following u_Mivi&d difference

_h 1/9 S_023,q023 2_ _.7293.>1293 .a_ q,oa4 fQoa4_Ttl: Ltt-_ t,t] / _ _'rt I _ vt7 !
, q,012f_01_'2 -- c0Gl_'30B1 _ _.,18L2,q182_]/--(2, c'0 n'- .) (JO -1-o tt 0 ]J/

2h_

(5t)

The artificial dissipation terms are then augmented

as follows

(55)

Returning to the global Cartesian coordinate frame

f2 )-1 f" ) (56)

and converting to the conservative form

This describes the scheme that was used in the pre-

linlinary numerical experiment reported below.

Preliminary numerical results

The work on implementing the new scheme within

the FI_'N2D 11 code has just began. Our very firsl aim

is just to implement the numerical fluxes and t.o verify

the correctness of the residual evaluation.

The test.case presented is a subsonic flow (Math =

.2) in a channel with a bump. The grid consists of

la75 nodes (see Fig.a). A second order version of the

new scheme was used. The contour plots of density

are presented in Fig.4. We also present for compar-

ison in Fig.5 density contours of the solution to the

same problem using the standard second order scheme

with limiters switched off. order upwind scheme. The

soh, tion obtained using the new scheme is at. least as

accurate as the one using the standard schente.

Fig. 5 Solution obtained using the second order

upwind scheme: density contours.
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